Preconditioned Conjugate Gradient Methods for Three Dimensional Linear Elasticity

نویسنده

  • John Kenneth Dickinson
چکیده

Finite element modelling of three dimensional elasticity problems gives rise to large sparse matrices. Various preconditioning methods are developed for use in preconditioned conjugate gradient iterative solution techniques. Incomplete factorizations based on levels of fill, drop tolerance, and a two level hierarchical basis are developed. Various techniques for ensuring that the incomplete factors have positive pivots are presented. Computational tests are carried out for problems generated using unstructured tetrahedral meshes. Quadratic basis functions are used. The performance of the iterative methods is compared to a standard direct sparse matrix solver. Problems with up to 70,000 degrees of freedom, and small (¿ 1) element aspect ratio are considered.

منابع مشابه

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Parallel Finite Element Approximate Inverse Preconditioning on Symmetric Multiprocessor Systems

Parallel normalized preconditioned conjugate gradient type methods based on normalized approximate finite element inverse matrix techniques are investigated for the efficient solution of sparse linear systems. Application of the proposed methods on a three dimensional boundary value problems is discussed and numerical results are given. The parallel implementation of the normalized precondition...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Multigrid and Krylov Subspace Methods for the Discrete Stokes Equations

Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable discretizatiom a variety of numerical methods have been proposed that have rates of convergence independent of the mesh size used in the dkretization. In this paper we compare the performance of four such methods, namely variants of the Uzawa, preconditioned conjugate gradient, precondi...

متن کامل

Preconditioned IterativeMethods for Two-Dimensional Space-Fractional Diffusion Equations

In this paper, preconditioned iterative methods for solving two-dimensional space-fractional diffusion equations are considered. The fractional diffusion equation is discretized by a second-order finite difference scheme, namely, the Crank-Nicolson weighted and shifted Grünwald difference (CN-WSGD) scheme proposed in [W. Tian, H. Zhou andW. Deng, A class of second order difference approximation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002